The Linux-PAM Application
Developers' Guide

Andrew G. Morgan <nor gan@er nel . or g>
Thorsten Kukuk <kukuk@ hkukuk. de>

The Linux-PAM Application Developers' Guide
by Andrew G. Morgan and Thorsten Kukuk

Version 1.1.2, 31. August 2010
Abstract

Thismanual documentswhat an application devel oper needsto know about the Linux-PAM library. It describeshow an
application might use the Linux-PAM library to authenticate users. In addition it contains adescription of the functions
tobefoundin| i bpam m sc library, that can be used in general applications. Finally, it contains some comments
on PAM related security issues for the application devel oper.

R 1 1o o [oo 1

0 =1 P 1

S Y o o1 1

P2 O Y= o T PP 2
3. The public interface to LINUX-PAMuiiiiiiii e e e e e e 4
3.1. What can be expected by the appliCationccccouiiiiiiiiiiii e, 4
3.1.1. Initidlization of PAM tranSaCtionveeviiiiieiiiiiieeeee e e 4

3.1.2. Termination of PAM ranSaCtioncoeuuiiiiiiiiiiiiiiii e eaens 5

3.1.3. SEtiNg PAM IEMS ..uiiiiiici et 5

I A e x g To [= AN =1 7

3.1.5. Strings describing PAM €IT0r COUESuuiivuniiiiiicii e e e 9

3.1.6. Request adelay On fallureocouuiiiiiiiiiie e 9

3.1.7. AUthenticating the USErcc.uiiiii e e 10

3.1.8. Setting user CredentialScovviiii i 11

3.1.9. Account validation ManageMENLccuuerrnieriiieeiieeeiire e e e e e e e eeaneeees 12

3.1.10. Updating authentication tOKENSceevuiiiiiiiiii e 13

3.1.11. Start PAM SeSSioN MaNAGEMENLcvuueiiineeieeeiieeiteeeateeesieeeaneestnreeanaeeaneenes 14

3.1.12. terminating PAM SESSION ManagemMENtccueiiiieiiiieeiieeeiiee e e e e e e 14

3.1.13. Set or change PAM environment variablecccoeeiiiiiiiii i 15

3.1.14. Get a PAM environment varialecocuuiiiiiiiiiiiiiii e 15

3.1.15. Getting the PAM €nNVIFONMENToiiiiieiiiiciii e e e 16

3.2. What is expected of an appliCationcccuieiiiiiiiiii e e 16
3.2.1. The conversation fUNCLIONcoouueiieiiiiie e 16

RGN = (oo r=00) 0 11 070l 4 T0 (=S PP 18

4, Security iSSUES Of LINUX-PAM ... it e e e e e e e aaa s 19
4.1. Care about standard library CallS.........ccooiiiiiiiiii s 19

4.2. ChOICE Of @ SEIVICE NBIMEiiiiii ettt et e e e et e et eeeeae s 19

4.3. The conversation FUNCHIONcieuuiiiiiii e 20

4.4, The identity Of the USErcivvniii e e 20

A5, SUFFICIENT TESOUICES ...vevvi ettt e et e e e et e e et e e e e et e e e e et 20

5. A library of miscellaneous helper fTUNCLIONScccouiiiiiii e 21
L3N 0 g Tox o) SRS W o] o 1= o P 21
5.1.1. Text based conversation FUNCHIONcoeuuuiiiiiiiiieiiii e 21

5.1.2. Transcribing an environment to that of PAMc..coiiiiiiiiiiii e, 22

5.1.3. Liberating a locally saved environmentccooeviiiiiiiiiicii e 22

5.1.4. BSD like PAM environment variable Settingcccccoeviiiiiiiiie i, 23

6. Porting 1egacy appPliCaliONSccuuieiiii e e e e e e 24
7. Glossary of PAM related tEIMS ... ouvuiiii e e e e e e aaa s 25
8. AN example aPPlICAIIONuiiii e 26
ST | =P 28
0TS = R o 29
11. Author/acknNOWIEAGMENESiii e e e e e e e e e e eeen 30
12. Copyright information for this dOCUMENtoiiiiiiiiiii e 31

Chapter 1. Introduction
1.1. Description

Linux-PAM (Pluggable Authentication Modules for Linux) is alibrary that enables the local system ad-
ministrator to choose how individual applications authenticate users. For an overview of the Linux-PAM
library see the Linux-PAM System Administrators' Guide.

It isthe purpose of the Linux-PAM project to liberate the development of privilege granting software from
the development of secure and appropriate authentication schemes. This is accomplished by providing a
documented library of functions that an application may use for all forms of user authentication manage-
ment. Thislibrary dynamically loads locally configured authentication modules that actually perform the
authentication tasks.

From the perspective of an application developer the information contained in the local configuration of
the PAM library should not beimportant. Indeed it isintended that an application treat the functions docu-
mented here asa'black box' that will deal with all aspects of user authentication. 'All aspects' includes user

verification, account management, session initialization/termination and also the resetting of passwords
(authentication tokens).

1.2. Synopsis

For general applications that wish to use the services provided by Linux-PAM the following isa summary
of the relevant linking information:

#i ncl ude <security/ pamappl. h>

cc -o application -lpam

In addition to libpam, there is a library of miscellaneous functions that make the job of writing PAM-
aware applications easier (this library is not covered in the DCE-RFC for PAM and is specific to the
Linux-PAM distribution):

#i ncl ude <security/pam appl . h>
#i ncl ude <security/pammsc. h>

cc -o application -lpam-I|pamm sc

Chapter 2. Overview

Most service-giving applications are restricted. In other words, their service is not available to al and
every prospective client. Instead, the applying client must jump through a number of hoops to convince
the serving application that they are authorized to obtain service.

The process of authenticating a client is what PAM is designed to manage. In addition to authentication,
PAM provides account management, credential management, session management and authenti cation-to-
ken (password changing) management services. It isimportant to realize when writing a PAM based ap-
plication that these services are provided in amanner that is transparent to the application. That isto say,
when the application iswritten, no assumptions can be made about how the client will be authenticated.

The process of authentication is performed by the PAM library viaacall to pam aut henti cat e() .
The return value of this function will indicate whether a named client (the user) has been authenticated.
If the PAM library needs to prompt the user for any information, such astheir name or a password then it
will do so. If the PAM library is configured to authenticate the user using some silent protocol, it will do
thistoo. (This latter case might be via some hardware interface for example.)

It is important to note that the application must leave al decisions about when to prompt the user at the
discretion of the PAM library.

The PAM library, however, must work equally well for different styles of application. Some applications,
likethefamiliar login and passwd are terminal based applications, exchanges of information with theclient
inthese casesisas plain text messages. Graphically based applications, however, have amore sophisticated
interface. They generally interact with the user via specially constructed dialogue boxes. Additionally,
network based services require that text messages exchanged with the client are specially formatted for
automated processing: one such example is ftpd which prefixes each exchanged message with a numeric
identifier.

The presentation of simple requests to a client is thus something very dependent on the protocol that the
serving application will use. In spite of the fact that PAM demands that it drives the whole authentication
process, it isnot possibleto |eave such protocol subtletiesup tothe PAM library. To overcomethis potential
problem, the application provides the PAM library with a conversation function. This function is called
from within the PAM library and enables the PAM to directly interact with the client. The sorts of things
that this conversation function must be able to do are prompt the user with text and/or obtain textual input
from the user for processing by the PAM library. The details of thisfunction are provided in alater section.

For example, the conversation function may be called by the PAM library with a request to prompt the
user for a password. Its job is to reformat the prompt request into a form that the client will understand.
In the case of ftpd, this might involve prefixing the string with the number 331 and sending the request
over the network to a connected client. The conversation function will then obtain any reply and, after
extracting the typed password, will return this string of text to the PAM library. Similar concerns need to
be addressed in the case of an X-based graphical server.

There are a number of issues that need to be addressed when one is porting an existing application to
become PAM compliant. A section below has been devoted to this: Porting legacy applications.

Besides authentication, PAM provides other forms of management. Session management is provided with
calstopam open_sessi on() and pam cl ose_sessi on() . What these functions actualy do is
up to thelocal administrator. But typically, they could be used to log entry and exit from the system or for
mounting and unmounting the user's home directory. If an application provides continuous service for a
period of time, it should probably call these functions, first open after the user is authenticated and then
close when the service is terminated.

Overview

Account management is another areathat an application devel oper should include with acall topam ac-
ct _mgnt () . Thiscall will perform checks on the good health of the user's account (has it expired etc.).
One of the things this function may check is whether the user's authentication token has expired - in such
a case the application may choose to attempt to update it with a call to pam chaut ht ok(), athough
some applications are not suited to thistask (ftp for example) and in this case the application should deny
access to the user.

PAM is also capable of setting and deleting the user's credentials with the call pam set cred() . This
function should always be called after the user is authenticated and before service is offered to the user.
By convention, this should be the last call to the PAM library before the PAM session is opened. What
exactly acredential is, is not well defined. However, some examples are given in the glossary below.

Chapter 3. The public interface to
Linux-PAM

Firstly, the relevant include file for the Linux-PAM library is<securi t y/ pam appl . h>. It contains
the definitions for a number of functions. After listing these functions, we collect some guiding remarks
for programmers.

3.1. What can be expected by the application

3.1.1. Initialization of PAM transaction

#include <security/pam_appl.h>
int pamstart(service_name, user, pamconversation, pamh);

const char *service_naneg;

const char *user;

const struct pam.conv *pam conversati on;
pam handl e_t **panh;

int pamstart_confdir(service_nanme, user, pamconversation, confdir,
pamh) ;

const char *service_nane;

const char *user;

const struct pam.conv *pam conversati on;
const char *confdir;

pam handl e_t **pamnh;

3.1.1.1. DESCRIPTION

Thepam st art function createsthe PAM context and initiates the PAM transaction. It isthefirst of the
PAM functions that needs to be called by an application. The transaction state is contained entirely within
the structure identified by this handle, so it is possible to have multiple transactions in paralel. But it is
not possible to use the same handle for different transactions, a new one is needed for every new context.

The service_name argument specifies the name of the service to apply and will be stored as
PAM_SERVICE item in the new context. The policy for the service will be read from the file / et c/
pam d/ servi ce_nane or, if that file does not exist, from/ et ¢/ pam conf.

The user argument can specify the name of the target user and will be stored as PAM_USER item. If the
argument isNULL, the module has to ask for thisitem if necessary.

The pam_conver sation argument points to a struct pam_conv describing the conversation function to use.
An application must provide this for direct communication between aloaded module and the application.

Following a successful return (PAM_SUCCESS) the contents of pamh is a handle that contains the PAM
context for successive calls to the PAM functions. In an error caseis the content of pamh undefined.

The pam_handle t is a blind structure and the application should not attempt to probe it directly for in-
formation. Instead the PAM library provides the functions pam_set_item(3) and pam_get_item(3). The
PAM handle cannot be used for multiple authentications at the same time as long as pam _end was not
caled onit before.

The public interface to Linux-PAM

Thepam start_confdir function behaves like the pam st art function but it also allows setting
confdir argument with a path to adirectory to override the default (/ et ¢/ pam d) path for service policy
files. If the confdir is NULL, the function works exactly the ssmeaspam st art .

3.1.1.2. RETURN VALUES

3.1.2.

PAM_ABORT General failure.
PAM_BUF _ERR Memory buffer error.
PAM_SUCCESS Transaction was successfully started.

PAM_SYSTEM_ERR System error, for example a NULL pointer was submitted instead of a pointer to
data.

Termination of PAM transaction

#include <security/pam_appl.h>
i nt pam end(panmh, pam status);

pam handl e_t *panh;
i nt pam st at us;

3.1.2.1. DESCRIPTION

The pam_end function terminates the PAM transaction and is the last function an application should call
in the PAM context. Upon return the handle pamh is no longer valid and all memory associated with it
will beinvalid.

Thepam_status argument should be set to the val ue returned to the application by thelast PAM library call.

The value taken by pam status is used as an argument to the module specific callback function,
cl eanup() (Seepam_set data(3) and pam_get_data(3)). In this way the module can be given notifica-
tion of the pass/fail nature of the tear-down process, and perform any last minute tasks that are appropriate
to the module before it is unlinked. This argument can be logically OR'd with PAM_DATA SILENT to
indicate that the module should not treat the call too seriously. It is generally used to indicate that the
current closing of the library isin afork(2)ed process, and that the parent will take care of cleaning up
things that exist outside of the current process space (files etc.).

Thisfunction free'sall memory for items associated with the pam_set_item(3) and pam_get_item(3) func-
tions. Pointers associated with such objects are not valid anymore after pam end was called.

3.1.2.2. RETURN VALUES

3.1.3.

PAM_SUCCESS Transaction was successful terminated.

PAM_SYSTEM_ERR System error, for example a NULL pointer was submitted as PAM handle or the
function was called by a module.

Setting PAM items

#include <security/pam_modules.h>

int pamset_itenm(panmh, itemtype, item;

The public interface to Linux-PAM

pam handl e_t *pamh;

int itemtype;
const void *item

3.1.3.1. DESCRIPTION

The pam set _i t emfunction allows applications and PAM service modules to access and to update
PAM information of item type. For this a copy of the object pointed to by the item argument is created.
Thefollowing item_types are supported:

PAM_SERVICE

PAM_USER

PAM_USER_PROMPT

PAM_TTY

PAM_RUSER

PAM_RHOST

PAM_AUTHTOK

PAM_OLDAUTH-
TOK

PAM_CONV
Thefollowing additional

The service name (which identifies that PAM stack that the PAM functions will
use to authenticate the program).

The username of the entity under whose identity service will be given. That is,
following authentication, PAM_USER identifies the local entity that gets to use
the service. Note, this value can be mapped from something (eg., "anonymous')
to something else (eg. "guest119") by any module in the PAM stack. As such
an application should consult the value of PAM_USER after each call to a PAM
function.

The string used when prompting for a user's name. The default value for this
string isalocalized version of "login: ".

The terminal name prefixed by / dev/ for devicefiles. In the past, graphical X-
based applications used to store the $DISPLAY variable here, but with the intro-
duction of PAM_XDISPLAY this usage is deprecated.

The requesting user name: local name for a locally requesting user or a remote
user name for a remote requesting user.

Generally an application or module will attempt to supply the value that is most
strongly authenticated (a local account before a remote one. The level of trust
in this value is embodied in the actual authentication stack associated with the
application, so it is ultimately at the discretion of the system administrator.

PAM_RUSER@PAM_RHOST should always identify the requesting user. In
some cases, PAM_RUSER may be NULL. In such situations, it is unclear who
the requesting entity is.

The requesting hostname (the hosthame of the machine from which the
PAM_RUSERentity isrequesting service). That isPAM_RUSER@PAM_RHOST
does identify the requesting user. In some applications, PAM_RHOST may be
NULL. In such situations, it is unclear where the authentication request is orig-
inating from.

The authentication token (often apassword). This token should be ignored by all
module functions besides pam_sm_authenticate(3) and pam_sm_chauthtok(3).
Intheformer function it is used to pass the most recent authentication token from
one stacked modul e to ancther. In the latter function the token is used for another
purpose. It contains the currently active authentication token.

The old authentication token. This token should be ignored by al module func-
tions except pam_sm_chauthtok(3).

The pam_conv structure. See pam_conv(3).

items are specific to Linux-PAM and should not be used in portabl e applications:

The public interface to Linux-PAM

PAM_FAIL_DELAY

PAM_XDISPLAY

PAM_XAUTHDATA

PAM_AUTH-
TOK_TYPE

A function pointer to redirect centrally managed failure delays. See
pam fail_delay(3).

Thename of the X display. For graphical, X-based applicationsthevaluefor this
item should be the $DISPLAY variable. This value may be used independently
of PAM_TTY for passing the name of the display.

A pointer to a structure containing the X authentication data required to make
a connection to the display specified by PAM_XDISPLAY, if such information
is necessary. See pam_xauth_data(3).

The default action isfor the modul e to use the following prompts when request-
ing passwords: "New UNIX password: " and "Retype UNIX password: . The
exampleword UNI X can be replaced with thisitem, by default it isempty. This
itemis used by pam_get_authtok(3).

For al item_types, other than PAM_CONV and PAM_FAIL_DELAY, itemisapointer to a<NUL> ter-
minated character string. In the case of PAM_CONV, item points to an initialized pam_conv structure. In
the case of PAM_FAIL_DELAY, itemis afunction pointer: voi d (*del ay_fn)(int retval,

unsi gned usec_del ay, void *appdata_ptr)

Both, PAM_AUTHTOK and PAM_OLDAUTHTOK, will be reset before returning to the application.
Which means an application is not able to access the authentication tokens.

3.1.3.2. RETURN VALUES

PAM_BAD_ITEM

The application attempted to set an undefined or inaccessible item.

PAM_BUF ERR Memory buffer error.
PAM_SUCCESS Data was successful updated.

PAM_SYSTEM_ERR The pam_handle_t passed as first argument was invalid.

3.1.4. Getting PAM items

#include <security/pam_modules.h>

int pamget _iten(panmh, itemtype, item;

const pam handl e_t *panh;

int itemtype;

const void **item

3.1.4.1. DESCRIPTION

Thepam get _i t emfunction allows applicationsand PAM service modulesto access and retrieve PAM
information of item_type. Upon successful return, item contains a pointer to the value of the corresponding
item. Note, thisis a pointer to the actual data and should not be free()'ed or over-written! The following
values are supported for item type:

PAM_SERVICE

PAM_USER

The service name (which identifies that PAM stack that the PAM functions will
use to authenticate the program).

The username of the entity under whose identity service will be given. That is,
following authentication, PAM_USER identifies the local entity that gets to use

The public interface to Linux-PAM

the service. Note, this value can be mapped from something (eg., "anonymous’)
to something else (eg. "guest119") by any module in the PAM stack. As such
an application should consult the value of PAM_USER after each call to a PAM
function.

PAM_USER_PROMPT The string used when prompting for a user's name. The default value for this

PAM_TTY

PAM_RUSER

PAM_RHOST

PAM_AUTHTOK

PAM_OLDAUTH-
TOK

PAM_CONV

string isalocalized version of "login: ".

The terminal name prefixed by / dev/ for devicefiles. In the past, graphical X-
based applications used to store the $DISPLAY variable here, but with the intro-
duction of PAM_XDISPLAY this usage is deprecated.

The requesting user name: local name for alocally requesting user or a remote
user name for aremote requesting user.

Generally an application or module will attempt to supply the value that is most
strongly authenticated (a local account before a remote one. The level of trust
in this value is embodied in the actual authentication stack associated with the
application, so it is ultimately at the discretion of the system administrator.

PAM_RUSER@PAM_RHOST should always identify the requesting user. In
some cases, PAM_RUSER may be NULL. In such situations, it is unclear who
the requesting entity is.

The requesting hostname (the hosthame of the machine from which the
PAM_RUSERentity isrequesting service). ThatisPAM_RUSER@PAM_RHOST
does identify the requesting user. In some applications, PAM_RHOST may be
NULL. In such situations, it is unclear where the authentication request is orig-
inating from.

The authentication token (often a password). This token should be ignored by all
module functions besides pam_sm_authenticate(3) and pam_sm_chauthtok(3).
Intheformer function it is used to pass the most recent authentication token from
one stacked module to another. In the latter function the token is used for another
purpose. It contains the currently active authentication token.

The old authentication token. This token should be ignored by all module func-
tions except pam_sm_chauthtok(3).

The pam_conv structure. See pam_conv(3).

Thefollowing additional items are specific to Linux-PAM and should not be used in portabl e applications:

PAM_FAIL_DELAY

PAM_XDISPLAY

PAM_XAUTHDATA

PAM_AUTH-
TOK_TYPE

A function pointer to redirect centrally managed failure delays. See
pam fail_delay(3).

Thename of the X display. For graphical, X-based applicationsthevauefor this
item should be the $DISPLAY variable. This value may be used independently
of PAM_TTY for passing the name of the display.

A pointer to a structure containing the X authentication data required to make
a connection to the display specified by PAM_XDISPLAY, if such information
is necessary. See pam_xauth_data(3).

The default action isfor the modul e to use the following prompts when request-
ing passwords. "New UNIX password: " and "Retype UNIX password: . The

The public interface to Linux-PAM

example word UNI X can be replaced with thisitem, by default itisempty. This
itemisused by pam_get_authtok(3).

If a service module wishes to obtain the name of the user, it should not use this function, but instead
perform acall to pam_get _user(3).

Only a service module is privileged to read the authentication tokens, PAM_AUTHTOK and
PAM_OLDAUTHTOK.

3.1.4.2. RETURN VALUES

3.1.5.

PAM_BAD_ITEM The application attempted to set an undefined or inaccessible item.

PAM_BUF ERR Memory buffer error.
PAM_PER- The value of itemwas NULL.
M_DENIED

PAM_SUCCESS Data was successful updated.

PAM_SYSTEM_ERR The pam_handle t passed asfirst argument wasinvalid.

Strings describing PAM error codes

#include <security/pam_appl.h>
const char *pam strerror(pamh, errnunj;

pam handl e_t *panh;
int errnum

3.1.5.1. DESCRIPTION

Thepam st r er r or function returnsapointer to astring describing the error code passed in the argument
errnum, possibly using the LC_MESSAGES part of the current locale to select the appropriate language.
This string must not be modified by the application. No library function will modify this string.

3.1.5.2. RETURN VALUES

3.1.6.

This function returns always a pointer to a string.

Request a delay on failure

#include <security/pam_appl.h>
i nt pam fail _del ay(panh, usec);

pam handl e_t *panh;
unsi gned i nt usec;

3.1.6.1. DESCRIPTION

Thepam f ai | _del ay function provides a mechanism by which an application or module can suggest
aminimum delay of usec micro-seconds. The function keeps a record of the longest time requested with
thisfunction. Should pam_authenticate(3) fail, thefailing return to the application is delayed by an amount
of time randomly distributed (by up to 50%) about thislongest value.

The public interface to Linux-PAM

Independent of success, the delay time is reset to its zero default value when the PAM service module
returns control to the application. The delay occurs after all authentication modules have been called, but
before control is returned to the service application.

When using this function the programmer should check if it is available with:

#i f def HAVE_PAM FAI L_DELAY

#endi f /* HAVE_PAM FAI L_DELAY */

For applications written with a single thread that are event driven in nature, generating this delay may be
undesirable. Instead, the application may want to register the delay in some other way. For example, in a
single threaded server that serves multiple authentication requests from asingle event loop, the application
might want to simply mark a given connection as blocked until an application timer expires. For this
reason the delay function can be changed with the PAM_FAIL_DELAY item. It can be queried and set with
pam_get item(3) and pam_set_item(3) respectively. The value used to set it should be afunction pointer
of the following prototype:

void (*delay_fn)(int retval, unsigned usec_delay, void *appdata_ptr);

The arguments being the retval return code of the module stack, the usec_delay micro-second delay that
libpam is requesting and the appdata_ptr that the application has associated with the current pamh. This
last value was set by the application when it called pam_start(3) or explicitly with pam_set_item(3).

Note that the PAM_FAIL_DELAY itemisset to NULL by default. This indicates that PAM should per-
form arandom delay as described above when authentication fails and a delay has been suggested. If an
application does not want the PAM library to perform any delay on authentication failure, then the appli-
cation must define a custom delay function that executes no statements and set the PAM_FAIL_DELAY
item to point to this function.

3.1.6.2. RETURN VALUES

3.1.7.

PAM_SUCCESS Delay was successful adjusted.

PAM_SYSTEM_ERR A NULL pointer was submitted as PAM handle.

Authenticating the user

#include <security/pam_appl.h>
i nt pam aut henti cat e(panh, fl ags);

pam handl e_t *pamh;
int flags;

3.1.7.1. DESCRIPTION

The pam aut hent i cat e function is used to authenticate the user. The user is required to provide an
authenti cation token depending upon the authentication service, usually thisis a password, but could also
be afinger print.

10

The public interface to Linux-PAM

The PAM service module may request that the user enter their username via the conversation mechanism
(see pam_start(3) and pam_conv(3)). The name of the authenticated user will be present in the PAM item
PAM_USER. Thisitem may be recovered with acall to pam_get_item(3).

The pamh argument is an authentication handle obtained by aprior call to pam_start(). The flags argument
isthe binary or of zero or more of the following values:

PAM_SILENT Do not emit any messages.
PAM_DISALLOW_NULL_AU- The PAM module service should return PAM_AUTH_ERR if the
THTOK user does not have a registered authentication token.

3.1.7.2. RETURN VALUES
PAM_ABORT The application should exit immediately after calling pam_end(3) first.
PAM_AUTH_ERR The user was not authenticated.

PAM_CRED_INSUFFICIENT For some reason the application does not have sufficient credentials to
authenticate the user.

PAM_AUTHINFO_UN- The modules were not able to access the authentication information.
AVAIL This might be due to a network or hardware failure etc.
PAM_MAXTRIES One or more of the authentication modules has reached its limit of tries

authenticating the user. Do not try again.
PAM_SUCCESS The user was successfully authenticated.

PAM_USER_UNKNOWN User unknown to authentication service.

3.1.8. Setting user credentials

#include <security/pam_appl.h>
i nt pam setcred(panh, flags);

pam handl e_t *panh;
int flags;

3.1.8.1. DESCRIPTION

Thepam set cr ed function is used to establish, maintain and delete the credentials of a user. It should
be called to set the credentials after a user has been authenticated and before a session is opened for the
user (with pam_open_session(3)). The credentials should be del eted after the session has been closed (with
pam_close_session(3)).

A credentia is something that the user possesses. It is some property, such as a Kerberos ticket, or a
supplementary group membership that make up the uniqueness of a given user. On a Linux system the
user's UID and GID's are credentials too. However, it has been decided that these properties (along with
the default supplementary groups of which the user isamember) are credential s that should be set directly
by the application and not by PAM. Such credentials should be established, by the application, prior to a
call to this function. For example, initgroups(2) (or equivalent) should have been performed.

Vdlid flags, any one of which, may belogically OR'd with PAM _SI LENT, are:

11

The public interface to Linux-PAM

PAM_ESTABLISH_CRED Initialize the credentials for the user.
PAM_DELETE _CRED Delete the user's credentials.

PAM_REINITIALIZE_CRED Fully reinitialize the user's credentials.

PAM_REFRESH_CRED Extend the lifetime of the existing credentials.
3.1.8.2. RETURN VALUES

PAM_BUF _ERR Memory buffer error.

PAM_CRED_ERR Failed to set user credentials.

PAM_CRED_EX- User credentials are expired.

PIRED

PAM_CRED_UN- Failed to retrieve user credentials.

AVAIL

PAM_SUCCESS Data was successful stored.

PAM_SYSTEM_ERR A NULL pointer was submitted as PAM handle, the function was called by a
module or another system error occurred.

PAM_USER_UN- User is not known to an authentication module.
KNOWN

3.1.9. Account validation management

#include <security/pam_appl.h>
i nt pam acct _ngnt (pamh, flags);

pam handl e_t *panmnh;
int flags;

3.1.9.1. DESCRIPTION

Thepam acct _ngnt function is used to determine if the user's account is valid. It checks for authen-
tication token and account expiration and verifies access restrictions. It is typically called after the user
has been authenticated.

The pamh argument is an authentication handle obtained by aprior call to pam_start(). The flags argument
isthe binary or of zero or more of the following values:

PAM_SILENT Do not emit any messages.

PAM_DISALLOW _NULL_AU- The PAM module service should return PAM_NEW_AUTH-

THTOK TOK_REQD if the user has a null authentication token.
3.1.9.2. RETURN VALUES

PAM_ACCT_EXPIRED User account has expired.

PAM_AUTH_ERR Authentication failure.

12

The public interface to Linux-PAM

PAM_NEW_AUTH-
TOK_REQD

The user account is valid but their authentication token is expired. The
correct response to thisreturn-value isto require that the user satisfiesthe
pam chaut ht ok() function before obtaining service. It may not be
possible for some applications to do this. In such cases, the user should
be denied access until such time as they can update their password.

PAM_PERM_DENIED Permission denied.
PAM_SUCCESS The authentication token was successfully updated.

PAM_USER_UNKNOWN User unknown to password service.

3.1.10. Updating authentication tokens

#include <security/pam_appl.h>

i nt pam chaut ht ok(pamh, fl ags);

pam handl e_t
int flags;

* panh;

3.1.10.1. DESCRIPTION

The pam chaut ht ok function is used to change the authentication token for a given user (asindicated
by the state associated with the handle pamh).

The pamh argument is an authentication handle obtained by aprior call to pam_start(). The flags argument
isthe binary or of zero or more of the following values:

PAM_SILENT

PAM_CHANGE_EXPIRED_AU-
THTOK

3.1.10.2. RETURN VALUES

PAM_AUTHTOK_ERR

PAM_AUTHTOK_RECOV-
ERY_ERR

PAM_AUTHTOK_LOCK_BUSY

PAM_AUTH-
TOK_DISABLE_AGING

PAM_PERM_DENIED
PAM_SUCCESS

PAM_TRY_AGAIN

Do not emit any messages.

This argument indicates to the modules that the user's authentica
tion token (password) should only be changed if it has expired. If
this argument is not passed, the application requiresthat all authen-
tication tokens are to be changed.

A module was unable to obtain the new authentication token.

A module was unable to obtain the old authentication token.

Oneor moreof the moduleswas unabl eto changethe authentication
token since it is currently locked.

Authentication token aging has been disabled for at |east one of the
modules.

Permission denied.
The authentication token was successfully updated.

Not all of the modules were in a position to update the authentica-
tion token(s). In such acase none of the user's authentication tokens
are updated.

13

The public interface to Linux-PAM

PAM_USER _UNKNOWN User unknown to password service.

3.1.11. Start PAM session management

#include <security/pam_appl.h>
i nt pam open_sessi on(panh, flags);

pam handl e_t *panh;
int flags;

3.1.11.1. DESCRIPTION

Thepam open_sessi on function sets up a user session for apreviously successful authenticated user.
The session should later be terminated with a call to pam_close_session(3).

It should be noted that the effective uid, geteuid(2), of the application should be of sufficient privilege to
perform such tasks as creating or mounting the user's home directory for example.

The flags argument is the binary or of zero or more of the following values:

PAM_SI- Do not emit any messages.
LENT

3.1.11.2. RETURN VALUES

PAM_ABORT Genera failure.
PAM_BUF ERR Memory buffer error.
PAM_SESSION_ERR Session failure.

PAM_SUCCESS Session was successful created.

3.1.12. terminating PAM session management

#include <security/pam_appl.h>
i nt pam cl ose_sessi on(panmh, flags);

pam handl e_t *panh;
int flags;

3.1.12.1. DESCRIPTION

The pam cl ose_sessi on function is used to indicate that an authenticated session has ended. The
session should have been created with acall to pam_open_session(3).

It should be noted that the effective uid, geteuid(2). of the application should be of sufficient privilege to
perform such tasks as unmounting the user's home directory for example.

The flags argument is the binary or of zero or more of the following values:

PAM_SI- Do not emit any messages.
LENT

14

The public interface to Linux-PAM

3.1.12.2. RETURN VALUES

PAM_ABORT General failure.
PAM_BUF_ERR Memory buffer error.
PAM_SESSION_ERR Session failure.

PAM_SUCCESS Session was successful terminated.

3.1.13. Set or change PAM environment variable

#include <security/pam_appl.h>
i nt pam put env(pamh, nane_val ue);

pam handl e_t *panh;
const char *nane_val ue;

3.1.13.1. DESCRIPTION

Thepam put env functionisusedto add or changethevalue of PAM environment variablesasassociated
with the pamh handle.

The pamh argument is an authentication handle obtained by a prior call to pam_start(). The name_value
argument isasingle NUL terminated string of one of the following forms:

NAME=value of variable In this case the environment variable of the given NAME is set to the
indicated value: value of variable. If thisvariable is already known, it
is overwritten. Otherwise it is added to the PAM environment.

NAME= Thisfunction setsthe variable to an empty value. It islisted separately
to indicate that thisis the correct way to achieve such a setting.

NAME Without an '=' the pam put env() function will delete the corre-
sponding variable from the PAM environment.

pam put env() operates on acopy of hame_value, which meansin contrast to putenv(3), the application
isresponsible for freeing the data.

3.1.13.2. RETURN VALUES

PAM_PER- Argument name_value givenisaNULL pointer.
M_DENIED

PAM_BAD_ITEM Variable requested (for deletion) is not currently set.

PAM_ABORT The pamh handleis corrupt.
PAM_BUF ERR Memory buffer error.
PAM_SUCCESS The environment variable was successfully updated.

3.1.14. Get a PAM environment variable

#include <security/pam_appl.h>

15

The public interface to Linux-PAM

const char *pam get env(panh, namne);

pam handl e_t *panh;
const char *nane;

3.1.14.1. DESCRIPTION

The pam_get env function searches the PAM environment list as associated with the handle pamh for
an item that matches the string pointed to by name and returns a pointer to the value of the environment
variable. The application is not allowed to free the data.

3.1.14.2. RETURN VALUES

The pam get env function returns NULL on failure.

3.1.15. Getting the PAM environment

#include <security/pam_appl.h>
char **pam get envli st (pamh);

pam handl e_t *panh;
3.1.15.1. DESCRIPTION

Thepam get envl i st function returns acomplete copy of the PAM environment as associated with the
handle pamh. The PAM environment variabl es represent the contents of the regular environment variables
of the authenticated user when serviceis granted.

The format of the memory isamalloc()'d array of char pointers, the last element of whichisset to NULL.
Each of the non-NULL entries in this array point to a NUL terminated and malloc()'d char string of the
form: "name=value".

It should be noted that this memory will never be free()'d by libpam. Once obtained by a call to
pam get envl i st , itistheresponsibility of the calling application to free() this memory.

It is by design, and not a coincidence, that the format and contents of the returned array matches that
required for the third argument of the execle(3) function call.

3.1.15.2. RETURN VALUES

Thepam get envl i st function returns NULL on failure.

3.2. What is expected of an application

3.2.1. The conversation function

#include <security/pam_appl.h>

struct pam nmessage {
int meg_style;
const char *nmnsg;

16

The public interface to Linux-PAM

b

struct pamresponse {
char *resp;
int resp_retcode;

b

struct pam conv {
int (*conv)(int numnmsg, const struct pam nessage **nsg,
struct pamresponse **resp, void *appdata_ptr);
voi d *appdata_ptr;
b

3.2.1.1. DESCRIPTION

The PAM library uses an application-defined callback to allow adirect communication between aloaded
module and the application. This callback is specified by the struct pam_conv passed to pam_start(3) at
the start of the transaction.

When amodul e callsthereferenced conv() function, the argument appdata_ptr isset to the second element
of this structure.

The other arguments of a call to conv() concern the information exchanged by module and application.
That isto say, num_msg holdsthe length of the array of pointers, msg. After asuccessful return, the pointer
resp pointsto an array of pam_response structures, holding the application supplied text. Theresp_retcode
member of this struct is unused and should be set to zero. It is the caller's responsibility to release both,
this array and the responses themselves, using free(3). Note, *resp isastruct pam_response array and not
an array of pointers.

The number of responses is always equal to the num_msg conversation function argument. This does
require that the response array is free(3)'d after every call to the conversation function. The index of the
responses corresponds directly to the prompt index in the pam_message array.

On failure, the conversation function should release any resources it has allocated, and return one of the
predefined PAM error codes.

Each message can have one of four types, specified by the msg_style member of struct pam_message:

PAM_PROMPT_E- Obtain a string without echoing any text.
CHO_OFF

PAM_PROMPT_E- Obtain a string whilst echoing text.
CHO_ON

PAM_ERROR_MSG Display an error message.
PAM_TEXT_INFO Display some text.

The point of having an array of messages is that it becomes possible to pass a number of things to the
applicationin asingle call from themodule. It can a so be convenient for the application that related things
come at once: a windows based application can then present a single form with many messages/prompts
on at once.

In passing, it is worth noting that there is a discrepancy between the way Linux-PAM handles the const
struct pam_message **msg conversation function argument and the way that Solaris PAM (and deriva

17

The public interface to Linux-PAM

tives, known to include HP/UX, are there others?) does. Linux-PAM interprets the msg argument as en-
tirely equivalent to the following prototype const struct pam_message *msg[] (which, in spirit, is consis-
tent with the commonly used prototypes for argv argument to the familiar main() function: char **argv;
and char *argv[]). Said another way Linux-PAM interprets the msg argument as a pointer to an array of
num_msg read only 'struct pam_message’ pointers. Solaris PAM implementation interprets this argument
as a pointer to a pointer to an array of num_msg pam_message structures. Fortunately, perhaps, for most
modul e/application devel opers when num_msg has avalue of one these two definitions are entirely equiv-
alent. Unfortunately, casually raising this number to two has led to unanticipated compatibility problems.

For what its worth the two known module writer work-arounds for trying to maintain source level com-
patibility with both PAM implementations are:

» never cal the conversation function with num_msg greater than one.

 set up msg as doubly referenced so both types of conversation function can find the messages. That
is, make

meg[n] = & ((*msg)[n])

3.2.1.2. RETURN VALUES
PAM_BUF ERR Memory buffer error.

PAM_CON- Conversation failure. The application should not set *resp.
V_ERR

PAM_SUCCESS Success.

3.3. Programming notes

Note, all of the authentication service function calls accept the token PAM_SLENT, which instructs the
modules to not send messages to the application. This token can be logically OR'd with any one of the
permitted tokens specific to the individual function calls. PAM_SLENT does not override the prompting
of the user for passwords etc., it only stops informative messages from being generated.

18

Chapter 4. Security issues of Linux-
PAM

PAM, from the perspective of an application, isaconvenient API for authenticating users. PAM modules
generally have no increased privilege over that possessed by the application that is making use of it. For
this reason, the application must take ultimate responsibility for protecting the environment in which PAM
operates.

A poorly (or maliciously) written application can defeat any Linux-PAM modul€'s authentication mecha
nisms by simply ignoring it'sreturn values. It is the applications task and responsibility to grant privileges
and access to services. The Linux-PAM library simply assumes the responsibility of authenticating the
user; ascertaining that the user is who they say they are. Care should be taken to anticipate al of the doc-
umented behavior of the Linux-PAM library functions. A failure to do this will most certainly lead to a
future security breach.

4.1. Care about standard library calls

In general, writers of authorization-granting applications should assume that each moduleislikely to call
any or all 'libc' functions. For 'libc' functions that return pointers to static/dynamically allocated structures
(ie. the library allocates the memory and the user is not expected to 'f r ee() ' it) any module cal to this
function islikely to corrupt a pointer previously obtained by the application. The application programmer
should either re-call such a 'libc' function after a call to the Linux-PAM library, or copy the structure
contents to some safe area of memory before passing control to the Linux-PAM library.

Two important function classes that fall into this category are getpwnam(3) and syslog(3).

4.2. Choice of a service name

When picking the service-name that correspondsto the first entry in the Linux-PAM configuration file, the
application programmer should avoid the temptation of choosing something related to ar gv[0] . Itisa
trivial matter for any user to invoke any application on a system under a different name and this should
not be permitted to cause a security breach.

Ingeneral, thisisalwaystheright adviceif the program is setuid, or otherwise more privileged than the user
that invokesiit. In some cases, avoiding this advice is convenient, but as an author of such an application,
you should consider well the ways in which your program will be installed and used. (Its often the case
that programs are not intended to be setuid, but end up being installed that way for convenience. If your
program fallsinto this category, don't fall into the trap of making this mistake.)

To invoke some target application by another name, the user may symbolically link the target application
with the desired name. To be precise all the user need do is, In -s /tar get/application ./preferred_name
and then run ./preferred_name.

By studying the Linux-PAM configuration file(s), an attacker can choose the preferred_name to be that
of a service enjoying minimal protection; for example a game which uses Linux-PAM to restrict access to
certain hours of the day. If the service-name were to be linked to the filename under which the service was
invoked, it is clear that the user is effectively in the position of dictating which authentication scheme the
service uses. Needlessto say, thisis not a secure situation.

Theconclusionisthat the application developer should carefully define the service-name of an application.
The safest thing isto make it a single hard-wired name.

19

Security issues of Linux-PAM

4.3. The conversation function

Care should be taken to ensure that the conv() function is robust. Such a function is provided in the
library libpam_misc (see below).

4.4. The identity of the user

The Linux-PAM modules will need to determine the identity of the user who requests a service, and the
identity of the user who grants the service. These two users will seldom be the same. Indeed there is
generally athird user identity to be considered, the new (assumed) identity of the user once the service
is granted.

The need for keeping tabs on these identitiesis clearly an issue of security. One convention that is actively
used by some modulesisthat theidentity of the user requesting a service should be the current UID (user
ID) of the running process; the identity of the privilege granting user is the EUID (effective user ID) of
the running process; the identity of the user, under whose name the service will be executed, is given by
the contents of the PAM_USER pam_get_item(3). Note, modules can change the values of PAM_USER
and PAM_RUSER during any of the pam * () library calls. For this reason, the application should take
care to use the pam get _iten() every time it wishes to establish who the authenticated user is (or
will currently be).

For network-serving databases and other applications that provide their own security model (independent
of the OS kernel) the above scheme isinsufficient to identify the requesting user.

A more portable solution to storing the identity of the requesting user is to use the PAM_RUSER
pam_get_item(3). The application should supply thisvalue before attempting to authenticate the user with
pam aut henti cat e() . How well this name can be trusted will ultimately be at the discretion of the
local administrator (who configures PAM for your application) and a selected module may attempt to
override the value where it can obtain morereliable data. If an application is unable to determine the iden-
tity of the requesting entity/user, it should not call pam_set_item(3) to set PAM_RUSER.

In addition to the PAM_RUSER item, the application should supply the PAM_RHOST (requesting host)
item. Asageneral rule, thefollowing convention for itsval ue can be assumed: NUL L = unknown; local host
= invoked directly from the local system; other.place.xyz = some component of the user's connection
originates from this remote/requesting host. At present, PAM has no established convention for indicating
whether the application supports a trusted path to communication from this host.

4.5. Sufficient resources

Care should be taken to ensure that the proper execution of an application is not compromised by alack
of system resources. If an application is unable to open sufficient files to perform its service, it should
fail gracefully, or request additional resources. Specifically, the quantities manipulated by the setrlimit(2)
family of commands should be taken into consideration.

Thisis also true of conversation prompts. The application should not accept prompts of arbitrary length
with out checking for resource allocation failure and dealing with such extreme conditions gracefully and
in a manner that preserves the PAM API. Such tolerance may be especially important when attempting
to track a malicious adversary.

20

Chapter 5. A library of miscellaneous

helper functions

To aid the work of the application developer alibrary of miscellaneous functionsis provided. It is called
libpam_misc, and contains a text based conversation function, and routines for enhancing the standard

PAM-environment variable support.

Thefunctions, structures and macros, made available by thislibrary can be defined by including <secu-
rity/ pam m sc. h>. It should be noted that this library is specific to Linux-PAM and is not referred
to in the defining DCE-RFC (see See also) below.

5.1. Functions supplied

5.1.1. Text based conversation function

#include <security/pam_misc.h>

int msc_conv(numnsg, nsgm response, appdata ptr);

int num.nsg;

const struct pam nessage **nmsgm
struct pam.response **response;

voi d *appdata_ptr;

5.1.1.1. DESCRIPTION

Them sc_conv function is part of libpam_misc and not of the standard libpam library. This function
will prompt the user with the appropriate comments and obtain the appropriate inputs as directed by au-

thentication modules.

In addition to simply slotting into the appropriate pam_conv(3), this function provides some time-out
facilities. The function exports five variables that can be used by an application programmer to limit the
amount of time this conversation function will spend waiting for the user to type something. The five

variables are as follows:

time_t pam_misc_con-
Vv_warn_time;

const char *pam_misc_con-
v_warn_line;

time_t pam_misc_conv_die time;

Thisvariable containsthe time (asreturned by time(2)) that the user
should be first warned that the clock is ticking. By default it has
the value 0, which indicates that no such warning will be given.
The application may set its value to sometime in the future, but this
should be done prior to passing control to the Linux-PAM library.

Used in conjunction with pam m sc_conv_war n_t i me, this
variableis a pointer to the string that will be displayed when it be-
comestime to warn the user that the timeout is approaching. Its de-
fault valueis atrandated version of “...Timeisrunning out...”, but
this can be changed by the application prior to passing control to
Linux-PAM.

Thisvariable containsthe time (asreturned by time(2)) that the will
time out. By default it hasthe value 0, which indicates that the con-

21

A library of miscella-
neous helper functions

const char *pam_misc_con-
v_die line;

int pam_misc_conv_died;

versation function will not timeout. The application may set itsval-
ue to sometime in the future, but this should be done prior to pass-
ing control to the Linux-PAM library.

Used in conjunction with pam ni sc_conv_di e_ti ne, this
variable is a pointer to the string that will be displayed when the
conversation times out. Its default value is a trandated version of
“...Sorry, your timeisup!”, but this can be changed by the applica-
tion prior to passing control to Linux-PAM.

Following a return from the Linux-PAM library, the value of this
variable indicates whether the conversation has timed out. A value
of 1 indicates the time-out occurred.

The following two function pointers are available for supporting binary promptsin the conversation func-
tion. They are optimized for the current incarnation of the libpamc library and are subject to change.

int (*pam_binary_handler_fn)(void
*appdata, pamc_bp _t *prompt_p);

int (*pam_binary_han-
dier_free)(void * appdata, pam-
c_bp_t *delete_me);

This function pointer isinitialized to NULL but can be filled with
a function that provides machine-machine (hidden) message ex-
change. It isintended for use with hidden authentication protocols
such as RSA or Diffie-Hellman key exchanges. (Thisis still under
development.)

This function pointer is initialized to PAM BP_RE-
NEW del ete_me, 0, 0), butcan be redefined as desired by
the application.

5.1.2. Transcribing an environment to that of PAM

#include <security/pam_misc.h>

i nt pam m sc_paste_env(pamh, user);

pam handl e_t *panh;
const char * const *user;

5.1.2.1. DESCRIPTION

This function takes the supplied list of environment pointers and uploads its contents to the PAM envi-
ronment. Successis indicated by PAM_SUCCESS.

5.1.3. Liberating a locally saved environment

#include <security/pam_misc.h>

i nt pam. m sc_drop_env(env);

char **env;

5.1.3.1. DESCRIPTION

Thisfunction is defined to complement the pam_getenvlist(3) function. It liberates the memory associated
with env, overwriting with 0 all memory beforef r ee() ing it.

22

A library of miscella-
neous helper functions

5.1.4. BSD like PAM environment variable setting

#include <security/pam_misc.h>
i nt pam m sc_setenv(panmh, nane, val ue, readonly);

pam handl e_t *panh;
const char *nane;

const char *val ue;
i nt readonly;

5.1.4.1. DESCRIPTION

This function performs a task equivalent to pam_putenv(3), its syntax is, however, more like the BSD
stylefunction; set env() . Thenane and val ue are concatenated with an '='to form aname=value and
passed to pam put env() . If, however, the PAM variable is already set, the replacement will only be
applied if thelast argument, r eadonl y, is zero.

23

Chapter 6. Porting legacy applications

The point of PAM isthat the application is not supposed to have any idea how the attached authentication
modules will choose to authenticate the user. So all they can do is provide a conversation function that
will talk directly to the user(client) on the modules' behalf.

Consider the case that you plug aretinal scanner into the login program. In this situation the user would be
prompted: " please look into the scanner”. No username or password would be needed - all thisinformation
could be deduced from the scan and a database lookup. The point is that the retinal scanner is an ideal
task for a"module’.

While it is true that a pop-daemon program is designed with the POP protocol in mind and no-one ever
considered attaching a retinal scanner to it, it is also the case that the "clean" PAM'ification of such a
daemon would allow for the possibility of a scanner module being be attached to it. The point being that
the "standard" pop-authentication protocol(s) [which will be needed to satisfy inflexible/legacy clients]
would be supported by inserting an appropriate pam_gpopper module(s). However, having rewritten popd
once in thisway any new protocols can be implemented in-situ.

Onesimpletest of aported application would betoinsert thepam_per mit module and seeif the application
demands you type a password... In such a case, xlock would fail to lock the terminal - or would at best be
a screen-saver, ftp would give password free access to al etc.. Neither of these is a very secure thing to
do, but they do illustrate how much flexibility PAM puts in the hands of the local admin.

The key issue, in doing things correctly, is identifying what is part of the authentication procedure (how
many passwords etc..) the exchange protocol (prefixes to prompts etc., numbers like 331 in the case of
ftpd) and what is part of the service that the application delivers. PAM really needsto have total control in
the authentication "procedure”, the conversation function should only deal with reformatting user prompts
and extracting responses from raw input.

24

Chapter 7. Glossary of PAM related

terms

Thefollowing are alist of terms used within this document.

Authentication token

Credentials

Generally, thisisapassword. However, users can authenticate themselves
in avariety of ways. Updating the user's authentication token thus corre-
sponds to refreshing the object they use to authenticate themselves with
the system. The word password is avoided to keep open the possibility
that the authentication involves aretinal scan or other non-textual mode
of challenge/response.

Having successfully authenticated the user, PAM is able to establish cer-
tain characteristicg/attributes of the user. These are termed credentials.
Examples of which are group memberships to perform privileged tasks
with, and tickets in the form of environment variables etc. . Some user-
credentials, such asthe user's UID and GID (plus default group member-
ships) are not deemed to be PAM-credentials. It is the responsibility of
the application to grant these directly.

25

Chapter 8. An example application

Toget aflavor of theway aLinux-PAM application iswritten weinclude the following example. It prompts
the user for their password and indicates whether their account is valid on the standard output, its return
code also indicates the success (0 for success; 1 for failure).

/*
This programwas contributed by Shane Watts
[modi fications by AGM and kukuk]

You need to add the followi ng (or equivalent) to the
/et c/ pam d/ check_user file:
check authorization

aut h required pam uni X. SO
account required pam uni X. SO
*/

#i ncl ude <security/pam appl . h>
#i ncl ude <security/pammsc. h>
#i ncl ude <stdio. h>

static struct pamconv conv = {
m sc_conv,
NULL

b

int main(int argc, char *argv[])
{

pam handl e_t *pamh=NULL

int retval

const char *user="nobody";

if(argc == 2) {
user = argv[1];

}

if(argec > 2) {
fprintf(stderr, "Usage: check_user [usernane]\n");

exit(1l);
}
retval = pamstart("check_user", user, &conv, &panh);
if (retval == PAM SUCCESS)
retval = pam authenti cate(panh, 0); /* is user really user? */
if (retval == PAM SUCCESS)
retval = pam acct_ngnt (panmh, 0); /* permtted access? */

/* This is where we have been authorized or not. */

if (retval == PAM SUCCESS) {

26

An example application

fprintf(stdout, "Authenticated\n");
} else {
fprintf(stdout, "Not Authenticated\n");

}

i f (pam.end(pamh,retval) !'= PAM SUCCESS) ({ /* cl ose Linux-PAM */
panmh = NULL;
fprintf(stderr, "check _user: failed to rel ease authenticator\n");
exit(1l);

}

return (retval == PAM SUCCESS ? 0:1); /* indicate success */

27

Chapter 9. Files

/usr/include/security/pam_appl.h Header file with interfaces for Linux-PAM applications.

/usrf/include/security/pam_misc.h Header filefor useful library functionsfor making applications eas-
ier towrite.

28

Chapter 10. See also

e TheLinux-PAM System Administrators Guide.
* The Linux-PAM Module Writers Guide.

* The V. Samar and R. Schemers (SunSoft), "UNIFIED LOGIN WITH PLUGGABLE AUTHENTI-
CATION MODULES", Open Software Foundation Request For Comments 86.0, October 1995.

29

Chapter 11. Author/acknowledgments

This document was written by Andrew G. Morgan (morgan@kernel.org) with many contributions from
ChrisAdams, Peter Allgeyer, Tim Baverstock, Tim Berger, Craig S. Bell, Derrick J. Brashear, Ben Buxton,
Seth Chaiklin, Oliver Crow, Chris Dent, Marc Ewing, Cristian Gafton, Emmanuel Galanos, Brad M. Gar-
cia, Eric Hester, Roger Hu, Eric Jacksch, Michael K. Johnson, David Kinchlea, Olaf Kirch, Marcin Kor-
zonek, Thorsten Kukuk, Stephen Langasek, Nicolai Langfeldt, Elliot Lee, Luke Kenneth Casson Leighton,
Al Longyear, Ingo Luetkebohle, Marek Michalkiewicz, Robert Milkowski, Aleph One, Martin Pool, Sean
Reifschneider, Jan Rekorgjski, Erik Troan, Theodore Tso, Jeff Uphoff, Myles Uyema, Savochkin Andrey
Vladimirovich, Ronald Wahl, David Wood, John Wilmes, Joseph S. D. Yao and Alex O. Yuriev.

Thanks are al'so due to Sun Microsystems, especially to Vipin Samar and Charlie Lai for their advice.
At an early stage in the development of Linux-PAM, Sun graciously made the documentation for their
implementation of PAM available. This act greatly accelerated the development of Linux-PAM.

30

Chapter 12. Copyright information for
this document

Copyright (c) 2006 Thorsten Kukuk <kukuk@ hkukuk.de>
Copyright (c) 1996-2002 Andrew G Morgan <nor gan@ernel . or g>

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code nust retain the above copyri ght
notice, and the entire pernission notice inits entirety,
i ncluding the disclainmer of warranties.

2. Redistributions in binary form nust reproduce the above copyri ght
notice, this list of conditions and the follow ng disclainer in the
docunentati on and/or other materials provided with the distribution.

3. The nane of the author nmay not be used to endorse or pronote
products derived fromthis software wi thout specific prior
witten perni ssion.

Alternatively, this product may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GNU GPL are required instead of the above restrictions. (This clause
is necessary due to a potential bad interaction between the GNU GPL and the restrictions contained in a
BSD-style copyright.)

TH S SOFTWARE |S PROVIDED ""AS | S'' AND ANY EXPRESS OR | MPLI ED
WARRANTI ES, | NCLUDI NG BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE ARE DI SCLAI MED.
N NO EVENT SHALL THE AUTHOR BE LI ABLE FOR ANY DI RECT, | NDI RECT,

| NCl DENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG,
BUT NOT LI M TED TO, PROCUREMENT OF SUBSTI TUTE GOCDS OR SERVI CES; LCOSS
OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) HONEVER CAUSED AND
ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT LIABILITY, OR
TORT (1 NCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG I N ANY WAY OUT COF THE
USE OF TH S SOFTWARE, EVEN | F ADVI SED OF THE POSSI BI LI TY OF SUCH

31

